The company boldly claims that its system, a kind of battery-ultracapacitor hybrid based on barium-titanate powders, will dramatically outperform the best lithium-ion batteries on the market in terms of energy density, price, charge time, and safety. Pound for pound, it will also pack 10 times the punch of lead-acid batteries at half the cost and without the need for toxic materials or chemicals, according to the company.
Much like capacitors, ultracapacitors store energy in an electrical field between two closely spaced conductors, or plates. When voltage is applied, an electric charge builds up on each plate.
Ultracapacitors have many advantages over traditional electrochemical batteries. Unlike batteries, "ultracaps" can completely absorb and release a charge at high rates and in a virtually endless cycle with little degradation.
Where they're weak, however, is with energy storage. Compared with lithium-ion batteries, high-end ultracapacitors on the market today store 25 times less energy per pound.
On the other hand, EEStor's system--called an Electrical Energy Storage Unit, or EESU--is based on an ultracapacitor architecture that appears to escape the traditional limitations of such devices. The company has developed a ceramic ultracapacitor with a barium-titanate dielectric, or insulator, that can achieve an exceptionally high specific energy--that is, the amount of energy in a given unit of mass.
I think the machines had a better concept.
No comments:
Post a Comment